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A B S T R A C T   

The threatened Gangetic dolphin (Platanista gangetica) and smooth-coated otter (Lutrogale perspicillata) occuring 
in the Ganga River Basin (GRB), are experiencing a decline in their population and distribution range owing to 
multiple anthropogenic pressures, including pollution by Potentially Toxic Elements (PTEs). Apex predators 
primarily encounter contaminants through dietary exposure. Yet, notable gaps persist in our understanding of the 
risks associated with the ingestion of PTE-contaminated prey for Gangetic dolphins and smooth-coated otters. In 
this study, we examined the occurrence and spatial variation of PTEs in the prey (fish) of both these riverine 
mammals across three major rivers of the Basin, while also evaluating the associated risk of ingesting contam-
inated prey. Our assessment revealed no statistical variation in bioaccumulation profiles of PTEs across the three 
rivers, attributable to comparable land use patterns and PTE consumption within the catchment. Zn and Cu were 
the most dominant PTEs in the prey species. The major potential sources of pollution identified in the catchment 
include agricultural settlements, vehicular emissions, and the presence of metal-based additives in plastics. Zn, 
As and Hg accumulation vary with the trophic level whereas some PTEs show concentration (Hg) and dilution 
(As, Cr, Pb and Zn) with fish growth. The Risk Quotient (RQ), based on the dietary intake of contaminated prey 
calculated using Toxicity Reference Value was consistently below 1 indicating no significant risk to these riverine 
mammals. Conversely, with the exception of Co and Ni, the Reference Dose-based RQs for all other PTEs indi-
cated a substantial risk for Gangetic dolphins and smooth-coated otters through dietary exposure. This study 
serves as a pivotal first step in assessing the risk of PTEs for two threatened riverine mammals in a densely 
populated river basin, highlighting the importance of their prioritization in regular monitoring to reinforce the 
ongoing conservation efforts.   

1. Introduction 

Globally, freshwater biodiversity is threatened by multiple stressors 
including climate change, habitat degradation, invasive species and 
pollution (Reid et al., 2019). Riverine mammals are among the groups 
most affected by pollution, with serious repercussions for the pop-
ulations of freshwater cetaceans and otters (Huang et al., 2012; Cazzolla 
Gatti, 2016; Kean et al., 2021). 

The Gangetic dolphin (Platanista gangetica) and smooth-coated otter 
(Lutrogale perspicillata) are apex predators inhabiting several stretches of 
major rivers within the Ganga River Basin (GRB) ((Hussain, 2002; 

WII-GACMC, 2018; Das et al., 2022). P. gangetica (henceforth GD) and 
L. perspicillata (henceforth SCO), characterized by their status as apex 
predators, restricted home ranges, slow population growth rates, and 
low population densities are highly vulnerable to various 
human-induced impacts (Xie et al., 2021; Gkotsis et al., 2022). 

The occurence of GD is restricted to the riverine habitats of northern 
India owing to its physiological and ecological requirements (Das et al., 
2022; Das et al., 2024). The species, classified as "Endangered" on the 
IUCN Red List (IUCN, 2023), has experienced a population decline of 
over 50% since 1957 (Behera et al., 2013; Das et al., 2022; IUCN, 2023; 
Das et al., 2024) and a 24% reduction in its range within the GRB 
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(Paudel and Koprowski, 2020). SCO is a large-sized otter widely 
distributed in India, Pakistan, Bangladesh Nepal, Indo-China, Malaysia, 
Sumatra and Java (Hussain et al., 2018; Hussain and Choudhury, 1997; 
Nawab and Hussain, 2012a; IUCN, 2023). Despite its wide distribution, 
the vulnerable species is experiencing a decline (Hussain et al., 2018), 
this is particularly concerning, with projections (IUCN, 2023) indicating 
a potential population reduction of over 30% in the next three decades. 

Rivers in the Ganga Basin, such as the Ganga, Chambal, Yamuna, 
Ghaghra, Gandak, and Kosi, serving as important habitats for GD (Das 
et al., 2022, 2024) and SCO (Hussain and Choudhury, 1997) face chal-
lenges in habitat suitability due to the overlap with significant human 
settlements. As a result, these riverine mammals are exposed to a 
multitude of anthropogenic threats, including hunting, accidental mor-
tality by gillnet entanglement, habitat degradation, dams and other 
infrastructure, boat traffic, prey availability, climate change, and 
pollution by diverse contaminants (Behera et al., 2013; Sah et al., 2020; 
IUCN, 2023). Potentially Toxic Elements (PTEs) elevate this danger by 
accumulating in their habitats, ultimately reaching high levels in these 
apex predators (Kannan et al., 1993; Nair, 2009; Banyal and Kumar, 
2014; Paul, 2017; Sarah et al., 2019; Siddiqui et al., 2019; National 
Mission for Clean Ganga, 2023). PTEs include metals and metalloids, of 
varying environmental significance, such as Cadmium (Cd), Lead (Pb), 
Mercury (Hg), Arsenic (As), Copper (Cu), Chromium (Cr), Nickel (Ni), 
Zinc (Zn), that have been recognized for their persistence, widespread 
sources, and potential risk to humans and aquatic biota (Nieder et al., 
2018; Pourret and Hursthouse, 2018). PTEs have been documented to be 
associated with neurotoxicity, immunotoxicity, cytotoxicity and geno-
toxicity in aquatic mammals (Wise et al., 2008; Meaza et al., 2020). 
Several studies have also reported them to cause reproductive anomalies 
(Hyvärinen and Sipilä, 1984; Béland et al., 1992; Thomas et al., 2021) 
and even local extinctions (Gutleb, 2000). 

Nonetheless, despite global evidence on the effects of PTEs on 
aquatic mammals, the risk posed to GD and SCO by PTEs in India is yet to 
be assessed and quantified. 

Given their threatened status, it is imperative to comprehensively 
monitor and assess PTE-related health risks in these endangered flagship 
species to bolster ongoing conservation efforts and preserve aquatic 
ecosystem integrity. However, their threatened status often makes 
conventional biomonitoring efforts challenging and unethical. The 
reliance of GD and SCO on fish as their primary prey Nawab and Hus-
sain, 2012b; IUCN, 2024) provides a valuable and indirect method for 
biomonitoring PTEs and assessing the risks posed by them to these 
species. Over the past few decades, the screening-level ecological risk 
assessment approach, based on dietary tissue residue guidelines, has 
been successfully used to explore the potential health risk posed by 
contaminant exposure to aquatic mammals (Xie et al., 2020; Ye et al., 
2021). This approach assesses the dietary exposure risk of contaminants 
to the target species by quantifying the concentration of contaminants in 
the prey base. Furthermore, studies report variations in PTE bio-
accumulation in fish depending on species, habitat, feeding habits and 
geographical factors, and such variations seldom follow any uniform 
patterns (Lin et al., 2020; Córdoba-Tovar et al., 2022; Yan et al., 2022). 
This necessitates the assessment of contamination in different species 
occupying different niches and trophic levels, at various sites, even 
within the same river. 

Considering the identified research gaps, the overarching objective 
of this work is to screen PTEs that pose risk to GD and SCO. This study 
aims to specifically address the following key research questions: (i) 
What is the current contamination status of PTEs in the prey base of GD 
and SCO in GRB, India? (ii) What factors influence the observed patterns 
of bioaccumulation of PTEs in the prey? (iii) What risks do these apex 
predators face through consumption of PTEs contaminated prey? 

The study’s findings will help screen PTEs that pose risks to the GD 
and SCO in the three rivers, reinforcing ongoing conservation efforts. 

2. Materials and methods 

2.1. Study sites 

Three rivers, namely Kosi, Gandak, and Ghaghra, of the GRB were 
selected for the present study, and multiple sites were selected for 
sampling in each river stretch based on land-use patterns, anthropogenic 
pressures and GD and SCO distribution. The study area is part of the 
Middle Gangetic plains, characterised by high rainfall, and extensive 
agriculture settlements. Most of the study sites occur in the state of 
Bihar, which is characterised by a predominantly rural population ac-
counting for 88.71% of the state’s total population and inhabiting 
92,257.51 km2 of the state’s area as opposed to the remaining 11.29% of 
its urban population inhabiting only 1095.49 km2 of the state’s area 
(Census of India, 2011). A total of twelve sites were selected from three 
rivers (Fig. 1). Further details of the study area are provided in Sup-
plementary Information (Text S1 and Table S1). 

2.2. Sample collection 

Species of the genus Platanista feed predominantly on fish, with prey 
selectivity determined by prey size rather than species, owing to their 
narrow oesophagi (Takahashi and Yamasaki, 1972). The prey size dis-
tribution is generally dominated by prey items <20–30 cm in size (Sinha 
et al., 1993; Choudhary et al., 2006; Kelkar et al., 2018). Otters are also 
known to primarily consume small and medium-sized fish of average 
length of 5–15 cm, while larger fish are generally opportunistically 
consumed as they are harder to capture than smaller fish (Erlinge, 1968; 
Rowe-Rowe, 1977; Anoop and Hussain, 2005; Nawab and Hussain, 
2012b). Thus, the sampling efforts focused on collecting samples within 
the preferred size ranges of these species. A total of 276 freshly caught 
fishes comprising of 20 species were obtained from fishermen in the 
rivers in the post-monsoon season of 2021 (December 2021–January 
2022). Fish samples were collected from four sites along the Ghaghra (N 
= 80, 7 species), Gandak (N = 92, 9 species) and Kosi (N = 104, 10 
species) Rivers, respectively, for the present study. A total of 9 bentho-
pelagic, 7 pelagic, and 4 demersal fish species were collected from all 
sampling sites. 

The total length and weight of each individual were recorded on-site. 
The species were identified on-site, packed in a sealed bag, and kept in 
an ice-box for transportation to the laboratory, where they were stored 
in a deep freezer at − 50 ◦C until further processing. Details of the fish 
species collected from each site are given in Table 1 and Table S2. Data 
on trophic levels and habitat preference of each species were obtained 
from Fish Base (Froese and Pauly, 2023). 

2.3. Sample preparation and analysis 

Freeze-dried and ground whole fish samples were microwave- 
digested in a nitric acid-hydrogen peroxide solution. Briefly, approxi-
mately 0.4 g sample was digested using 4.0 mL of nitric acid (Merck, 
69%) and 0.5 mL of hydrogen peroxide (Merck, 50%) in an Anton Paar 
Multiwave Go Microwave Digester at 120 ◦C for 15 min, ramped to 200 
◦C in 15 min and digested at 200 ◦C for 30 min. After cooling, the 
digested sample was diluted to 25 mL with ultrapure water. 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS, Agilent 
ICP-MS-7850) was utilized to identify and quantify the PTEs Cr, Co, Ni, 
Cu, Zn, As, Cd, Hg, and Pb in the prey species. A seven-point calibration 
was performed using multi-element calibration standard-2A and Inter-
national Council for Harmonisation of Technical Requirements for 
Pharmaceuticals for Human Use/United States Pharmacopeia (ICH/ 
USP) Oral Target Elements Standard A (Agilent Technologies, USA). 
Scandium (Sc), Yttrium (Y), Indium (In), Terbium (Tb) and Bismuth (Bi) 
were used as internal standards for Cr, Co, Ni, Cu, Zn, As, Cd and Pb. 
Gold (Au) was used as internal standard for Hg. 
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2.4. Quality control and quality assurance 

The analytical data quality was guaranteed through the imple-
mentation of laboratory quality assurance and quality control methods, 
including the use of in-house standard operating procedures, calibration 
with standards, analysis of reagent blanks, recovery of SRM and analysis 
of replicates. The accuracy and precision of the analytical procedure was 
tested by recovery measurements using SRM (ERM-CE278k-mussel tis-
sue) from European Reference Materials. The percentage recoveries of 
the PTEs in the SRM ranged from 90.9% to 106%. 

The precision of the analytical procedures, expressed as the relative 
standard deviation (RSD), ranged from 5 to 10%. Two blanks and one 
SRM sample for each batch (10 samples) were analysed. Linear cali-
bration curves were obtained with the R2 value of 0.999–1.000 and 
calibration verification standard deviation was <±5%. The detected 
concentrations for most elements were above their respective detection 
limits. For concentrations below the detection limit, half of the detection 
limit was used in calculations. 

2.5. Screening level ecological risk assessment (SLERA) 

The SLERA, concerning potential health hazards from consuming 
prey contaminated with PTEs, utilizes Risk Quotients (RQ) based on two 
dietary tissue guidelines intended for human and mammalian exposure 
(Hung et al., 2004, 2007; Yu et al., 2020): the reference dose (RfD; mg 
kg− 1 ww day− 1) and toxicity reference value (TRV, mg kg− 1 ww day− 1). 

The RfD is generally used in regard to human health, and the TRV in 
reference to animal health. The calculated values of Maximum Allow-
able Concentration based on Reference Dose (MACRfD) and Toxicity 
Reference Value (MACTRV) for GD and SCO are provided in Table S3. 
The TRV of PTEs to GD and SCO was calculated based on the no 
observable adverse effect dose for mammalian test species, relative to 
body weight scaling procedure (bodyweight of the GD or SCO/body-
weight of the test species) as described by Sample et al. (1996) and Hung 

Fig. 1. Study Area representing the sampling sites and GD and SCO habitat in Kosi, Gandak, and Ghaghra River of Ganga River Basin, India.  

Table 1 
Details of fish species collected from Kosi, Gandak, and Ghaghra.  

Species Trophic 
level 

Feeding 
habit 

Habitat 
preference 

Number of 
individuals 

Ailia coiliaa 3.6 ± 0.6 carnivorous Pelagic 11 
Aspidoparia jaya 3.3 ± 0.4 carnivorous Pelagic 9 
Aspidoparia 

morar 
3.2 ± 0.4 carnivorous Pelagic 63 

Channa striata 3.6 ±
0.47 

carnivorous Benthopelagic 8 

Cirrhinus reba 2.5 ± 0.2 omnivorous Benthopelagic 12 
Clupisma garua 3.7 ±

0.59 
carnivorous Demersal 9 

Eutropiichthys 
vacha 

3.9 ±
0.63 

carnivorous Demersal 12 

Mystus cavasiusa 3.4 ± 0.4 carnivorous Benthopelagic 30 
Mystus tengaraa 3.2 ±

0.40 
omnivorous Benthopelagic 10 

Mystus vittatusa 3.1 ± 0.1 omnivorous Benthopelagic 10 
Notopterus 

notopterus 
3.5 ± 0.0 carnivorous Demersal 7 

Puntius cholaa 2.5 ± 0.1 omnivorous Benthopelagic 20 
Puntius 

conchoniusa 
2.9 ±
0.33 

omnivorous Benthopelagic 16 

Puntius sophorea 2.6 ± 0.1 omnivorous Benthopelagic 10 
Raiamas bola 3.4 ± 0.4 omnivorous Demersal 5 
Rasbora 

rasboraa 
3.2 ± 0.4 omnivorous Benthopelagic 10 

Rhinomugil 
corsula 

2.4 ± 0.2 omnivorous Pelagic 13 

Salmophasia 
bacaila 

3.2 ±
0.40 

omnivorous Pelagic 11 

Setipinna taty 3.6 ± 0.6 carnivorous Pelagic 5 
Xenentodon 

cancila 
3.9 ±
0.62 

carnivorous Pelagic 6  

a Species commonly occurring in GD stomach contents (Kelkar et al., 2018). 
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et al. (2004, 2007). The RQ was determined from the ratio of the 
observed concentration and the Maximum Allowable Concentration 
(MAC) of a specific PTE in fish for human or mammalian consumption. 
An RQ greater than 1.0 implies a health risk to GD and SCO from 
consuming fish contaminated with a particular PTE, potentially 
inducing adverse biological effects in these threatened riverine 
mammals. 

The scarcity of comprehensive biological data on GD and SCO may 
constrain the precision of SLERA, owing to uncertainties in biological 
and exposure parameters including body weight, consumption habits, 
fraction ingested, exposure duration, and frequency. Despite these lim-
itations, the SLERA methodology utilized in this study aims to approx-
imate a worst-case scenario, adopting a conservative approach to screen 
PTEs that pose risk to GD and SCO for comprehensive assessment in 
order to enhance their protection. Notwithstanding its constraints, the 
SLERA methodology employed in this study seeks to simulate a worst- 
case scenario, employing a conservative approach to screen PTEs that 
pose risk to GD and SCO. This initial screening serves as a basis for a 
more thorough assessment aimed at bolstering the protection of these 
species. 

2.6. Statistical analyses 

Data were analysed by descriptive statistics and expressed as Range, 
and Mean ± Standard Deviation. The concentration of PTEs in fish is 
expressed as ng/g wet weight (ww). The assumptions for homogeneity 
of variance and normal distribution were tested with Levene’s tests and 
Shapiro–Wilk tests respectively. As the assumptions were violated, the 
variations of the PTEs between rivers and niche were analysed using 
non-parametric Kruskal-Wallis H-test. Spearman’s rank coefficient was 
used to evaluate the role of ecological and biological factors in bio-
accumulation of PTEs in prey fishes. Additionally, linear regression was 
applied to study the relationship between tissue PTE concentrations and 
the trophic levels of prey species. Models were validated through re-
sidual vs fit plots, normal Q-Q Plots and residual vs leverage plots. Only 
the models fulfilling these criteria were assessed. Statistical tests results 
were considered significant at p-value <0.05 and < 0.01. 

3. Results and discussion 

3.1. PTE concentrations in prey base of GD and SCO 

The mean concentrations of PTEs detected in the prey species in the 
three rivers are presented in Fig. 2 and Table S4. While the observed 
bioaccumulation pattern of ΣPTEs in three rivers was noted as Ghaghra 
(4449.10–49622.50 ng/g ww) > Gandak (10967.00–53101.86 ng/g 
ww) > Kosi (15681.70–42657.68 ng/g ww), a Kruskal-Wallis test indi-
cated no significant (p > 0.05) differences in PTE bioaccumulation 
among prey fish across the three rivers (Fig. 2). The similarity in land 
use, particularly the prevalence of agricultural settlements, across the 
catchments of the three rivers may account for the absence of variations 
in the accumulation of PTEs in prey species across these rivers (Fig. S1). 
In Gandak and Kosi, the PTE concentrations in prey species followed the 
trend Zn > Cu > Cr > Hg > Pb > Ni > As > Co > Cd. A slight variation in 
accumulation for As and Pb was observed in the Ghaghra River, with the 
trend Zn > Cu > Cr > Hg > As > Ni > Pb > Co > Cd. (See Table S4). 

Similar dominance and trends of some of these PTEs have also been 
noted in the tissue of the GD sampled along the Ganga River, with the 
element concentrations following the order Fe > Zn > Cu > Mn > Ni >
Cd > Pb in dolphin tissues (Kannan et al., 1993). 

Zn, Co and Cu are essential elements and fish rely on their intake 
from water and diet to facilitate essential processes, including growth, 
development, protein metabolism, immune-biochemical plasticity, and 
resistance against various stresses (Zhang and Wang, 2005; Wood et al., 
2012; Guo et al., 2016; Kumar et al., 2017; Don Xavier et al., 2018; 
Kumar et al., 2020). 

In the present study, the concentrations of Cu and Zn in the prey 
species, across all three rivers, were found to be higher than the other 
toxic elements. The elevated zinc levels can also be attributed to its 
natural abundance primarily influenced by chemical weathering and 
increased erosion in the flood-prone catchment area (Arya and Singh, 
2021). 

The river catchments of Gandak, Kosi, and Ghaghra are characterised 
by a predominantly agricultural land use (Fig. S1) interspersed with 
some degree of built-up area (Singh et al., 2017a,b; Parida et al., 2022; 
Anand et al., 2018). In the state of Bihar, where the three rivers flow and 
confluence with the Ganga River, there exists a total cultivated area of 
5.71 million hectares (ICAR, 2023), characterized by a cropping in-
tensity of 144% (Government of Bihar, 2024). Despite considerable 

Fig. 2. River-wise concentrations of PTEs (ng/g ww) in fish tissues collected from Gandak, Kosi and Ghaghra Rivers, India.  
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growth in the built-up area, the catchment lacks heavily industrialised 
zones, distinguishing it from other rivers, like the Ganga, where evi-
dence of PTE pollution is prevalent (Singh et al., 2020; Parween et al., 
2021). 

Therefore, the primary origin of anthropogenic contributions of PTEs 
in the examined rivers appears to be non-point source pollution, spe-
cifically emanating from agricultural run-off. Agrochemicals, including 
fertilisers and pesticides, often contain PTEs such as Cd, Pb, Cu, Zn and 
As (Alloway, 2013; Alengebawy et al., 2021). Many regions within the 
investigated catchment, are contending with zinc-deficient soils, spur-
ring an increased need for zinc-based fertilizers (ICAR, 2023). Applica-
tion of PTE-contaminated irrigation water, sewage sludge, livestock and 
poultry manures are also recognized as anthropogenic sources of PTEs in 
agricultural soil. The high annual monsoon floods in these rivers create 
conditions conducive to the influx of PTEs via surface runoff from the 
agriculturally dominated catchment (Ghosh et al., 2014; Sämann et al., 
2019). 

Vehicular emissions and associated traffic-related activities may also 
contribute to the concentration of PTEs in nearby water bodies through 
multiple pathways. Airborne deposition from exhaust emissions, wear 
and tear of vehicle components, runoff from roads, oil and fluid leaks, 
brake lining dust, and traffic-induced soil disturbance all play a role. 
These pollutants, including Pb, Cd, Zn, Cu, and Fe, can be transported 
into water bodies through stormwater runoff during rainfall events 
(Adamiec et al., 2016; Duan and Tan, 2013; Lin et al., 2020; Men et al., 
2018; Singh et al., 2018). PTEs such as Zn, Cu, and Pb are emitted into 
the atmosphere from various sources. Their long-range atmospheric 
transport, leads to their deposition in soils and eventual introduction 
into aquatic ecosystems through runoff processes (Nicholson et al., 
2003). 

It is noteworthy, that the concentration of Cd, Ni, Cu, Zn, and Pb in 
dolphin prey in the present study is comparable to and often even lower 
than that observed by Kannan et al. (1993). As previously mentioned, 
this can be attributed to limited presence of built-up areas and industrial 
settlements along these rivers, which restricts the input of PTEs from 
point sources. Additionally, the use of PTE-added pesticides in the basin 
has either remained consistent or reduced, owing to efforts for their 
regulation and public awareness (Agnihotri, 2000; Directorate of Plant 
Protection Quarantine and Storage, 2023). Similarly, regulatory actions 
such as the restriction on the addition of lead mixtures to petroleum, 
generation and disposal of hazardous wastes, and awareness campaigns 
(Bihar State Pollution Control Board, 2024; UNEP, 2021) likely 
contributed to maintaining stable PTE concentrations over the specified 
period. Nevertheless, a decrease in their input may not necessarily be 
translated to low risk due to the persistent, accumulative, and toxic 
nature of PTEs. 

Less explored but significant, the anthropogenic inputs of PTEs are 
also associated with metal-based additives in plastics. These elements, 
found in small quantities within additives like UV and heat stabilizers 
(Cd, Pb), inorganic pigments (Cd, Cu, Pb) and organic pigments (Co), 
serve to enhance both the functional and aesthetic aspects of plastics 
(Hahladakis and Iacovidou, 2018; Turner & Filella, 2021). The inclusion 
of PTEs in these additives, combined with improper plastic usage, 
recycling, and disposal, raises concerns about their unintended release 
into freshwater environments. 

The Gangetic plains, including areas in Bihar, are known for arsenic- 
enriched groundwater, making the river-groundwater interface a sig-
nificant source of arsenic contamination in rivers (Rahman et al., 2021; 
Wallis et al., 2020). 

3.2. Correlations among PTE concentrations and ecological, and 
biological variables 

Previous studies have recorded an effect of diet, habitat use and size 
of fish on the accumulation of trace elements in their tissues (Signa et al., 
2017; Wang et al., 2019). Hence, an investigation into the 

contamination patterns of PTEs in fish was conducted, exploring their 
correlation with ecological and biological variables to elucidate the 
contamination dynamics of PTEs within species and riverine food web. 
The following sections discuss the results of our assessments of varia-
tions of PTE contamination with these factors. 

3.2.1. Relationship with ecological factors (niche and trophic level) 
PTE accumulation in fishes is known to vary phylogenetically (Jef-

free et al., 2010), and by feeding habits and habitat preferences (Lin 
et al., 2021; Pragnya et al., 2021; Jiang et al., 2022). An Independent 
Samples Kruskal-Wallis test indicated significant variation in tissue PTE 
concentrations of As, Co, Cd, Cr, Cu and Ni among species occupying 
different positions in the water column. Significant variations were 
observed for As (<0.01) and Co (<0.05) concentrations between pelagic 
and benthopelagic species, and between demersal and benthopelagic 
species. Significant variations were observed only between the bentho-
pelagic and demersal groups for Cd (<0.01) and Cu (<0.05), while the 
concentrations varied significantly between pelagic and benthopelagic 
groups for Cr (<0.01) and Ni (<0.05) (Fig. 3). 

Similar results were observed by Yi et al. (2017), where highest 
concentrations of heavy metals appeared in the fish living in the pelagic 
middle-lower layers. Higher concentrations of elements in benthopela-
gic species have been attributed to their uptake from prey in the pelagic 
zone (Rejomon et al., 2010; Abdolahpur Monikh et al., 2012). 

Demersal fishes accumulated the highest concentrations (p > 0.05) 
of Hg in the present study, indicating the affinity of this element with the 
benthic sediments and its transfer from benthic sediment and prey to fish 
(Wong et al., 1997; Zhou and Wong, 2000; Hosseini et al., 2013). The 
recovery of sediments from Hg contamination is known to be slow 
(Dianne Kopec et al., 2018), and this could result in the persistence of 
this contaminant in sediments for long periods, thus being available for 
uptake by the river’s biological communities for a longer time. 

As and Zn are known to biodilute (Revenga et al., 2012; Montañez 
et al., 2018), and Hg is known to biomagnify across aquatic food webs 
(Guo et al., 2016). Our data supports the same trends (Fig. 4), with Zn (p 
< 0.05) and As (p < 0.01) showing significant negative correlations, 
while Hg showed a significant (p < 0.01) direct relationship with the 
trophic level of the prey species. Further exploration of these relation-
ships through linear regression models revealed significant influence of 
trophic levels on the tissue concentrations of Zn (p < 0.05, R2 = 0.16), As 
(p < 0.01, R2 = 0.17) and Hg (p < 0.01, R2 = 0.18). 

3.2.2. Relationship with biological factors 
A Spearman’s correlation analysis (Fig. 4) indicates a significant 

direct relationship between Hg accumulation and average length (p <
0.01) and weight (p < 0.01). In contrast, Cr (p < 0.05), Co (p < 0.01), Ni 
(p < 0.05), Zn (p < 0.01), As (p < 0.01) and Pb (p < 0.05) show an 
inverse relationship with the average length of the species. The metals 
Co (p < 0.05) and Zn (p < 0.01) also show a significant, inverse rela-
tionship with the average weight of the fish species. Previous studies 
have also reported growth dilution of several PTEs including Cr, Ni, Zn, 
Cu and Pb in fish (Canli and Atli, 2002; Merciai et al., 2014; Jiang et al., 
2022). On the other hand, growth constant and efflux rate constant have 
been identified as key drivers of Hg accumulation in fish, resulting in its 
positive relationship with fish size (Dang and Wang, 2012). 

The above findings indicate that various factors play a role in 
influencing the bioavailability, bioaccumulation, and dynamics of PTEs 
in the riverine ecosystem. Bioaccumulation and biodilution are them-
selves governed by a number of factors including site-specific food web 
structures and environmental factors. These relationships need to be 
explored further for efficient modelling, prediction and risk assessment 
for the conservation of threatened habitats and species. Moreover, our 
results indicating the relationship between the average length and 
weight of species and the PTE concentrations need to be investigated 
further as both length and weight could act as proxies for other drivers 
such as species, diet, sexual maturity, health, and habitat quality 
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(Richter et al., 2000; Moutopoulos and Stergiou, 2002; Romanuk et al., 
2011; Mozsár et al., 2015; Zhang et al., 2020; Hasan et al., 2021). 

3.3. Risk assessment 

Figs. 5 and 6 present a summary of the Risk Quotients (RQs), based 
on MACTRV and MACRfD, derived from the assessment of PTEs in prey- 
fish species and their potential impact on GD and SCO. The RfD, a 
frequently used metric in human health risk assessment, plays a pivotal 
role in assessing potential adverse health impacts linked to exposure to 
environmental contaminants. It is more stringent, and conservative than 
the TRV, thus providing a thorough and cautious evaluation of potential 
adverse health effects associated with exposure to environmental con-
taminants by incorporating increased safety factors for enhanced 
protection. 

3.3.1. Gangetic dolphin (GD) 
In general, the average risks associated with PTEs to GD, as assessed 

by MACTRV, consistently remained low with all RQs falling within the 

range of <0.001 to 0.701(Fig. 6). However, the 95th percentile data 
exceeded this threshold for Arsenic (RQTRV = 1.226–1.564), in all the 
three rivers, indicating the widespread contamination and high potency 
of this metalloid (Fig. 5 and Fig. S2-S4). 

According to the MACRfD, all PTEs, except Co and Ni, posed a sig-
nificant risk of exposure to GD through dietary exposure (Fig. 5). The 
average RQ in Kosi, Gandak, and Ghaghra rivers extends from 1.068 to 
30.536, 1.004 to 29.837, and 1.196 to 44.048, respectively. The average 
RQ values, calculated using the RfD, indicate that both Co and Ni pose a 
low risk to GD, as they consistently remain below 1. Nevertheless, the 
95th percentile RQ for Ni ranged from 1.215 to 2.855 across the three 
rivers. The RQRfD in all the rivers reveals a consistent pattern: As > Hg >
Cr > Zn > Cu > Cd > Ni > Co. 

In line with our findings, coastal species like the Indo-Pacific 
humpback dolphin (Sousa chinensis) have also been documented to 
face risks from consuming prey contaminated with Hg, As, Zn, and Cu 
(Lin, et al., 2020; Xie et al., 2020). 

PTEs toxicities have been linked to various immunotoxic and 
neurotoxic consequences in marine mammals (Bowles, 1999; Desforges 
et al., 2015; López-Berenguer et al., 2020). Chromium is recognized for 
its cytotoxic and genotoxic effects on cetaceans (Wise et al., 2008; Meaza 
et al., 2020). Hg is reported to have neurotoxic, nephrotoxic, hepato-
toxic and immunotoxic effects in cetaceans (Kershaw and Hall, 2019). 
While the immunotoxic and neurotoxic impacts of PTEs are extensively 
studied, these pollutants can also contribute to reproductive impair-
ments in aquatic mammals (Hyvärinen and Sipilä, 1984; Béland et al., 
1992). As has been observed to have lower toxicity in marine mammals 
as arsenobetaine, the most abundant organoarsenic compound that ac-
cumulates, is known to have low carcinogencity and toxicity (Neff, 
1997). However, other authors report its potential for carcinogenecity 
and endocrine disruption (Golub et al., 1998). 

The effects of Cu toxicity are little understood in aquatic mammals. 
In humans, acute Cu toxicity causes gastrointestinal reactions, and 
chronic toxicity is often associated with liver function (Fraga, 2005). 
Similar responses may be expected for other mammals including fresh-
water dolphins and otters. The research on terrestrial mammals, 
including hamsters, mice, rats, and rabbits has provided evidence that 
arsenic can induce developmental toxicity, leading to outcomes such as 
malformation, mortality, and growth retardation. 

Given the observed high toxicity in animal studies and its docu-
mented effects on human health, legitimate concerns arise regarding 

Fig. 3. Variations in tissue PTE concentrations (ng/g ww) in tissues of fish species collected from Gandak, Kosi and Ghaghra Rivers, India, with habitats.  

Fig. 4. Correlation of tissue PTE concentrations with ecological factor (TL: 
Trophic level) and biological traits (AW: Average weight; AL: Average Length) 
Correlation significant at * = p < 0.05; ** = p < 0.01. 
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potential risks to aquatic mammals. The high RfD-based RQ values 
revealed in the present findings bring much needed attention to the risks 
PTEs pose to threatened GD in the GRB, emphasizing the need to pri-
oritize these contaminants in regular monitoring programs aimed at GD 
conservation efforts. 

3.3.2. Smooth-coated otter (SCO) 
Apart from other mjor rivers in the GRB, the SCO was recorded from 

the Ghaghra River. Details of the average RQ calculated, based on TRVs, 
for the PTEs in Ghaghra are given in Fig. 6 and Fig. S5. All PTEs had 
RQTRV < 1, except for As, which posed a high risk (RQTRV = 1.679). 
Notably, RQ values at the 50th and 95th percentiles also exceeded the 
benchmark Fig. S5. 

The RfD based RQ values indicated high risk from all elements except 
for Co (RQ 0.211–0.978). Based on MACRfD, As (105.47) posed highest 
risks to SCO followed by Hg (45.66), Cr (18.34), Zn (10.80), Cu (5.13), 
Cd (2.86), and Ni (1.17). 

Otters may acquire high concentrations of persistent contaminants 
from the fish they prey on, with bioconcentration in the levels of 
90–95% (Ruiz-Olmo et al., 2000a,b), and prey and direct contamination 
are known to have resulted in local extinction of the otter Lutra lutra in 
various regions of Europe (Gutleb, 2000). 

In addition to the accumulation of these contaminants in tissues of 
otters, there is evidence indicating the maternal transfer of these ele-
ments from mothers to offspring (NOM-027-SSA1-1993, 1993; Chen 
et al., 2009; White et al., 2009; Basu et al., 2005; Croteau et al., 2005; 
Yates et al., 2005; Scheuhammer et al., 2007; Brown et al., 2021). 

Elevated concentrations of Co, Zn, and Cd have been noted in 
diseased and emaciated sea otters compared to healthy individuals, 
suggesting potential immunotoxic effects of these PTEs in otters (Kannan 
et al., 2006). Mercury is commonly regarded as the most detrimental 

metal to otters (Kruuk et al., 1997; Gutleb et al., 1998; Lemarchand 
et al., 2010), and the high RQRfD for Hg observed in the present study is 
concerning. Despite this, it is important to highlight that the otters have 
been known to eliminate significant amounts of Hg and other PTEs 
through their hair during moulting, potentially making it a significant 
and efficient method of eliminating toxic elements (Mason and Mac-
Donald, 1986; Hyvarinen et al., 2003; Strom, 2007). 

Therefore, exploring the potential of otter fur for future bio-
monitoring of PTEs could offer a valuable non-invasive approach. 

However, high elimination rates for PTEs may not be sufficient to 
safeguard these animals against PTE toxicity. For instance, Hg poisoning 
has been reported in a specimen of Eurasian otter, Lutra lutra, wherein 
the liver Hg concentrations were below the lowest observed adverse 
effect level 3.4 μg/g (Kim et al., 2023). 

Cd has been observed to affect the health of the baculum, a repro-
ductive bone in the North American river otter, potentially affecting 
reproductive success in the species (Thomas et al., 2021). Similar to GD, 
the present state of knowledge regarding the effects of PTEs on otters is 
quite limited, and effects must be predicted from responses established 
for other mammals including other mustelids. For instance, the elements 
Cr, Cu, Cd, Pb, As and Hg have a potential association with the decline of 
the mink, a semi-aquatic carnivorous mustelid, in Georgia, North Car-
olina and South Carolina (Osowski et al., 1995). Pb has also been 
observed to affect baculum health in the American mink (Fraschetti, 
2021). 

Considering the consequences of PTE exposure observed for the 
survival, reproduction and populations of otters and other aquatic 
mustelids, the risks indicated by the present study reflect a potential 
threat to SCO populations in the GRB as well. 

Fig. 5. Mean Risk Quotient (RQ; Log scale) for each PTE in the three rivers calculated for Gangetic dolphin from (a) Toxicity Reference Values (TRV), and (b) 
Reference Dose (RfD). 
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4. Conclusions 

In the present study, SLERA was conducted and 9 PTEs were 
screened that may pose potential risks to GD and SCO through dietary 
pathways. 

The bioaccumulation of PTEs revealed no significant variation across 
the three rivers attributed to the comparable land-use pattern and 
anthropogenic influence within the catchment. Non-point sources, 
including runoff from agricultural settlements, vehicular emissions, and 
improper plastic disposal serve as the primary drivers of PTE pollution in 
all three rivers, which is further exacerbated by flooding in the catch-
ment areas. 

Some PTEs show significant variation in bioaccumulation across 
habitats, with higher concentrations generally noted in benthopelagic 
fish species. Zn, As and Hg accumulation are dependent on the trophic 
level in the present study. Several elements also show concentration and 
dilution with fish growth. Of these relationships, the property of bio-
magnification, displayed by Hg, is of particular concern as it may have 
more serious repercussions for higher trophic levels, such as our 
threatened apex predators. 

The risk assessment through the dietary intake of contaminated prey, 
using both TRV and RfD, indicate varying degrees of risk to the GD and 
SCO. In the present study, the risk posed by PTEs based on TRV was 
generally low (RQ < 1), whereas risk based on RfD revealed that all 
PTEs, except Co, posed a high risk through dietary exposure in these 
riverine mammals. 

This study serves as a screening-level tool, offering valuable insights 
for the screening and prioritization of PTEs within routine monitoring 
programs designed to support conservation efforts for GD and SCO. 
While this study primarily focused on evaluating the health risks posed 
to GD and SCO by PTEs, it is imperative to acknowledge individual and 
cumulative risks from other emerging and toxic contaminants. Further 

investigations and holistic monitoring programs across large spatial and 
temporal scales in habitats of GD and SCO are necessary to enhance the 
efficacy of current monitoring strategies aimed at conserving these en-
dangered riverine mammals. 

Funding 

This work was funded by the National Mission for Clean Ganga 
(NMCG), Ministry of Jal Shakti, Government of India [grant number B- 
02/2015-16/1259/NMCG-WII PROPOSAL and B-03/2015-16/1077/ 
NMCG – NEW PROPOSAL]. 

CRediT authorship contribution statement 

Ruchika Sah: Visualization, Validation, Methodology, Investiga-
tion, Formal analysis, Data curation, Conceptualization. Megha Khan-
duri: Writing – original draft, Formal analysis, Data curation. Pooja 
Chaudhary: Formal analysis, Data curation. K. Thomas Paul: Formal 
analysis. Samridhi Gururani: Formal analysis, Data curation. Kirti 
Banwala: Data curation. Chitra Paul: Data curation. Mebin Aby Jose: 
Data curation. Sarita Bora: Data curation. Aishwarya Ramachandran: 
Visualization. Ruchi Badola: Supervision, Resources, Project adminis-
tration, Funding acquisition. Syed Ainul Hussain: Writing – review & 
editing, Supervision, Resources, Project administration, Funding 
acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Fig. 6. Mean RQ (Log scale) for each PTE in the three rivers calculated for Smooth-coated otter from (a) Toxicity Reference Values (TRV), and (b) Reference 
Dose (RfD). 

R. Sah et al.                                                                                                                                                                                                                                      



Data availability 

Data will be made available on request. 

Acknowledgements 

This research was conducted as part of the projects "Biodiversity 
Conservation and Ganga Rejuvenation" and "Planning & Management 
for Aquatic Species Conservation and Maintenance of Ecosystem Ser-
vices in the Ganga River Basin," which received funding from the Na-
tional Mission for Clean Ganga (NMCG), Ministry of Jal Shakti, 
Government of India. Our sincere appreciation goes to Shri G. Asok 
Kumar, Director General (DG) of NMCG, as well as Mr. Rajiv Ranjan 
Mishra and Mr. Upendra Prasad Singh, former DGs, and their dedicated 
teams for their invaluable funding support. We extend our gratitude to 
the Chief Wildlife Wardens of Uttar Pradesh and Bihar for their timely 
provision of research permits and facilitation, which were crucial for the 
successful completion of this study. We extend our gratitude to the Di-
rector and Dean of the Wildlife Institute of India for their assistance and 
cooperation in the smooth conduct of the study. We sincerely thank 
Bhawna Sharma, Arpita Roy, Aparna Rajeev, for their assistance with 
the field survey. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envpol.2024.123928. 

References 

Abdolahpur Monikh, F., Safahieh, A., Savari, A., Doraghi, A., 2012. Heavy metal 
concentration in sediment, benthic, benthopelagic, and pelagic fish species from 
Musa Estuary (Persian Gulf). Environ. Monit. Assess. 185 (1), 215–222, 10.1007/ 
s10661-012-2545-9.  
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